

CHAPTER - 8

LIMITS AND CONTINUITY-INTUITIVE APPROACH

LEARNING OBJECTIVES

After studying this chapter, you will be able to:

- Know the concept of limits and continuity;
- Understand the theoruems underlying limits and their applications; and
- Know how to solve the problems relating to limits and continuity with the help of given illustrations.

8.1 INTRODUCTION

Intuitively we call a quantity y a function of another quantity x if there is a rule (method procedure) by which a unique value of y is associated with a corresponding value of x.

A function is defined to be rule that associates to any given number x a single number f(x) to be read as function of x. f(x) does not mean f times x. It means given x, the rule f results the number f(x).

Symbolically it may be written in the form y = f(x).

In any mathematical function y = f(x) we can assign values for x arbitrarily; consequently x is the independent variable while the variable y is dependent upon the values of the independent variable and hence dependent variable.

Example 1: Given the function f(x) = 2x + 3 show that f(2x) = 2 f(x) - 3.

Solution: LHS. f(2x) = 2(2x) + 3 = 4x + 6 - 3 = 2(2x + 3) - 3

= 2 f(x) - 3.
Example 2: If f(x) = ax² + b find
$$\frac{f(x+h)-f(x)}{h}$$
.

Solution:
$$\frac{f(x+h)-f(x)}{h} = \frac{a(x+h)^2 + b - ax^2 - b}{h} = \frac{a(x^2 + 2xh + h^2 - x^2)}{h} = \frac{h a(2x+h)}{h}$$
$$= a(2x + h)$$

Note: f(x) = |x - a| means f(x) = x - a for x > a

$$= a - x \text{ for } x < a.$$
$$= x - a \text{ for } x = a$$

Example 3: If f(x) = |x| + |x - 2| then redefine the function. Hence find f (3.5), f (- 2), f(1.5).

Solution:	If $x > 2$	f(x) = x + x - 2 = 2x - 2
	If $x < 0$	f(x) = -x - x + 2 = 2 - 2x
	If $0 \le x \le 2$.	f(x) = x - x + 2 = 2

So the given function can be redefined as

Note. Any function becomes undefined (i.e. mathematically cannot be evaluated) if denominator is zero.

Example 4: If
$$f(x) = \frac{x+1}{x^2-3x-4}$$
 find $f(0)$, $f(1)$, $f(-1)$.
Solution: $f(x) = \frac{x+1}{(x-4)(x+1)}$ $\therefore f(0) = \frac{1}{-4} = \frac{-1}{4}$, $f(1) = \frac{2}{(-3)(2)} = \frac{1}{3}$ $f(-1) = \frac{0}{0}$ which is not possible
i.e. it is undefined.
Example 5: If $f(x) = x^2 - 5$ evaluate $f(3)$, $f(-4)$, $f(5)$ and $f(1)$
Solution: $f(x) = x^2 - 5$
 $f(3) = 3^2 - 5 = 9 - 5 = 4$
 $f(-4) = (-4)^2 - 5 = 16 - 5 = 11$
 $f(5) = 5^2 - 5 = 25 - 5 = 20$

8.2 TYPES OF FUNCTIONS

 $f(1) = 1^2 - 5 = 1 - 5 = -4$

Even and odd functions : if a function f(x) is such that f(-x) = f(x) then it is said to be an even function of x.

Examples : $f(x) = x^2 + 2x^4$ $f(-x) = (-x)^2 + 2(-x)^4 = x^2 + 2x^4 = f(x)$ Hence $f(x) = x^2 + 2x^4$ is an even function.

On the other hand if f(x) = -f(x) then f(x) is said to be an odd function.

Examples : $f(x) = 5x + 6x^3$

f (-x) = 5(-x) + 6(-x)³ = $-5x - 6x^3 = -(5x + 6x^3)$

Hence $5x + 6x^3$ is an odd function.

Periodic functions: A function f(x) in which the range of the independent variable can be separated into equal sub intervals such that the graph of the function is the same in each

MATHS

part then it is periodic function. Symbolically if f(x + p) = f(x) for all x, then p is the period of f.

Inverse function: If y = f(x) defined in an interval (a, b) is a function such that we express x as a function of y say x = g(y) then g(y) is called the inverse of f(x)

Example: i) if $y = \frac{5x+3}{2x+9}$, then $x = \frac{3-9y}{2y-5}$ is the inverse of the first function.

ii) $x=\sqrt[3]{y}$ is the inverse function of $y = x^3$.

Composite Function: If y = f(x) and x = g(u) then $y = f \{g(u)\}$ is called the function of a function or a composite function.

Example : If a function
$$f(x) = \log \frac{1+x}{1-x}$$
 prove that $f(x_1) + f(x_2) = f\left(\frac{x_1+x_2}{1+x_1x_2}\right)$
Solution : $f(x_1)+f(x_2) = \log \frac{1+x_1}{1-x_1} + \log \frac{1+x_2}{1-x_2}$
 $= \log \frac{1+x_1}{1-x_1} \times \frac{1+x_2}{1-x_2}$
 $= \log \frac{1+x_1+x_2+x_1x_2}{1-x_1-x_2+x_1x_2} = \log \frac{1+\frac{x_1+x_2}{1+x_1x_2}}{1-\frac{x_1+x_2}{1+x_1x_2}} = f\left(\frac{x_1+x_2}{1+x_1x_2}\right)$. Proved

 $1 \pm v$

Exercise 8(A)

Choose the most appropriate option (a) (b) (c) or (d)

Given the function $f(x) = x^2 - 5$, $f(\sqrt{5})$ is equal to 1.

b) 5

a) 0

c) 10

d) none of these

2. If $f(x) = \frac{5^{x}+1}{5^{x}-1}$ then f(x) is

a) an even function

c) a composite function

b) an odd function d) none of these

3.	If $g(x) = 3 - x^2$ then $g(x)$ is					
	a) an odd function c) an even function		b) a periodic functiond) none of these			
4.	If $f(x) = \frac{q \times (x-p)}{(q-p)} + \frac{1}{2}$	$\frac{p \times (x-q)}{(p-q)} \text{ then } f(p) + f$	(q) is equal to			
	a) p +q	b) f(pq)	c) f(p – q)	d) none of these		
5.	If $f(x) = 2x^2 - 5x + $	4 then $2f(x) = f(2x) f(x)$	or			
	a) x=1	b) x = - 1	c) $x = \pm 1$	d) none of these		
6.	If $f(x) = \log x$ ($x > 0$)) then $f(p) + f(q) + f(r)$) is			
	a) f(pqr)	b) $f(p)f(q)f(r)$	c) f(1/pqr)	d) none of these		
7.	If $f(x) = 2x^2 - 5x + 2$	2 then the value of $\frac{1}{2}$	f(4+h)-f(4) is			
	a) 11 – 2h	b) 11 + 2h	c) 2h – 11	d) none of these		
8.	If $y=h(x)=\frac{px-q}{qx-p}$ t	hen x is equal to				
	a) h(1/y)	b) h (-y)	c) h(y)	d) none of these		
9.	If $f(x) = x^2 - x$ then $f(h+1)$ is equal to					
	a) f(h)	b) f(-h)	c) f(-h + 1)	d) none of these		
10.	If $f(x) = \frac{1-x}{1+x}$ then	f (f($1/x$)) is equal to				
_	a) 1/x	b) x	c) -1/x	d) none of these		

8.3 CONCEPT OF LIMIT

I) We consider a function f(x) = 2x. If x is a number approaching to the number 2 then f(x) is a number approaching to the value $2 \times 2 = 4$.

The following table shows f(x) for different values of x approaching 2

х	f(x)
1.90	3.8
1.99	3.98
1.999	3.998
1.9999	3.9998
2	4

MATHS

Here x approaches 2 from values of x<2 and for x being very close to 2 f(x) is very close to 4. This situation is defined as left-hand limit of f(x) as x approaches 2 and is written as lim f(x) = 4 as $x \rightarrow 2 - 4$

Next

Х	f(x)
2.0001	4.0002
2.001	4.002
2.01	4.02
2.0	4

Here x approaches 2 from values of x greater than 2 and for x being very close to 2 f(x) is very close to 4. This situation is defined as right–hand limit of f(x) as x approaches 2 and is written as lim f(x) = 4 as $x \rightarrow 2 + 4$

So we write

 $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = 4$

Thus $\lim_{x\to a} f(x)$ is said to exist when both left-hand and right-hand limits exists and they

are equal. We write as

 $\lim_{x \to a-} f(x) = \lim_{x \to a+} f(x) = \lim_{x \to a} f(x)$ Thus, if $\lim_{h \to 0} f(a+h) = \lim_{h \to 0} f(a-h)$, (h>0) then $\lim_{x \to a} f(x)$ exists $x \to a$

We now consider a function defined by

 $f(x) = \begin{cases} 2x-2 & \text{for } x < 0 \\ 1 & \text{for } x = 0 \\ 2x+2 & \text{for } x > 0 \end{cases}$

We calculate limit of f(x) as x tend to zero. At x = 0 f(x) = 1 (given). If x tends to zero from left-hand side for the value of x<0 f(x) is approaching (2×0) -2 = -2 which is defined as left-hand limit of f(x) as $x \rightarrow 0$ - we can write it as

Thus $\lim_{x \to 0^{-}} = -2$

Similarly if x approaches zero from right-hand side for values of x>0 f(x) is approaching 2 $\times 0 + 2 = 2$. We can write this as $\lim_{x \to 0^+} f(x) = 2$.

8.6

In this case both left-hand limit and right-hand exist but they are not equal. So we may conclude that $\lim_{x \otimes 0} f(x)$ does not exist.

8.4 USEFUL RULES OF THEOREMS ON LIMITS

Let $\lim_{x \to a} f(x) = \ell$ and $\lim_{x \to a} g(x) = m$

where ℓ and m are finite quantities

i) $\lim_{x \to a} {f(x) + g(x)} = \lim_{x \to a} {f(x) + \lim_{x \to a} {g(x) = \ell} + m}$

That is limit of the sum of two functions is equal to the sum of their limits.

ii)
$$\lim_{x \to a} \{f(x) - g(x)\} = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = \ell - m$$

That is limit of the difference of two functions is equal to difference of their limits.

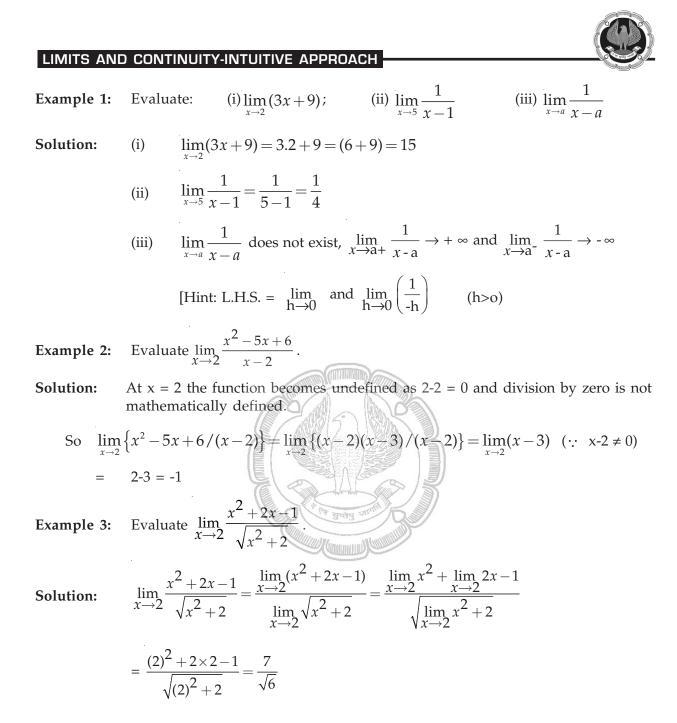
iii) $\lim_{x \to a} \{f(x) \cdot g(x)\} = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = \ell m$

That is limit of the product of two functions is equal to the product of their limits.

iv) $\lim_{x \to a} \{f(x)/g(x)\} = \{\lim_{x \to a} f(x)\}/\{\lim_{x \to a} g(x)\} = \ell/m$

That is limit of the quotient of two functions is equal to the quotient of their limits.

v) $\lim_{x \to a} c = c$ where c is a constant That is limit of a constant is the constant.


vi)
$$\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x)$$

vii)
$$\lim_{x \to a} F\{f(x)\} = F\{\lim_{x \to a} f(x)\} = F(l)$$

viii)
$$\lim_{x \to 0^+} \frac{1}{x} = \lim_{h \to 0^+} \frac{1}{h} \to +\infty$$
 (h>0)
 $x \to 0^+ \qquad h \to 0$
 $\lim_{x \to 0^-} \frac{1}{h} \to -\infty$ (h>0)
 $x \to 0^- \qquad h \to 0$

 ∞ is a very-very large number called infinity

Thus $\lim_{x \to 0} 1-x$ does not exist.

8.5 SOME IMPORTANT LIMITS

We now state some important limits

a)
$$\lim_{x \to 0} \frac{(e^x - 1)}{x} = 1$$

8.8

b)
$$\lim_{x \to 0} \frac{a^{x} - 1}{x} = \log_{e} a \quad (a > 0)$$

c) $\lim_{x \to 0} \frac{\log(1 + x)}{x} = 1$

d)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \text{ or } \lim_{x \to 0} \frac{(1 + x)^{\frac{1}{x}}}{x} = e$$

e)
$$\lim_{x \to a} \frac{x^{n} - a^{n}}{x - a} = na^{n-1}$$

f) $\lim_{x \to 0} \frac{(1 + x)^{n} - 1}{x} = n$

- (A) The number e called exponential number is given by e = 2.718281828 2.7183. This number e is one of the useful constants in mathematics.
- (B) In calculus all logarithms are taken with respect to base 'e' that is $\log x = \log_{e} x$.

ILLUSTRATIVE EXAMPLES

Example 1: Evaluate:
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3}$$
, where $f(x) = \frac{x^2 - 6x + 9}{x - 3}$. Also find f (3)

Solution: At x = 3 the function is undefined as division by zero is meaningless. While taking the limit as $x \rightarrow 3$ the function is defined near the number 3 because when $x \rightarrow 3 x$ cannot be exactly equal to 3 i.e. $x - 3 \neq 0$ and consequently division by x - 3 is permissible.

Now
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)^2}{x - 3} = \lim_{x \to 3} (x - 3) = 3 - 3 = 0$$
. $f(3) = \frac{0}{0}$ is undefined

The reader may compute the left-hand and the right-hand limits as an exercise.

Example 2: A function is defined as follows:

$$f(x) = \begin{cases} -3x & \text{when } x < 0 \\ 2x & \text{when } x > 0 \end{cases}$$

Test the existence of $\lim_{x \to 0} f(x)$.

Solution: For x approaching 0 from the left x < 0.

Left-hand limit = $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (-3x) = 0$ When x approaches 0 from the right x > 0 Right-hand limit = $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} 2x = 0$

MATHS

Since L.H. limit = R.H. Limit, the limit exists. Thus, $\lim_{x\to 0} f(x) = 0$.

Example 3: Does $\lim_{x \to \pi} \frac{1}{\Pi - x}$ exist ?

Solution:

 $\lim_{x\to\pi^{+0}}\frac{1}{\pi^{-x}}=\to\infty \quad \text{and} \quad \lim_{x\to\pi^{-0}}\frac{1}{\pi^{-x}}=+\infty ;$

R.H.L.
$$\lim_{x \to \pi} \left(\frac{1}{\Pi - x} \right) = \lim_{h \to 0} \left[\frac{1}{\Pi - (\Pi + h)} \right] = \lim_{h \to 0} \left(\frac{1}{-h} \right) \to -\infty$$

Since the limits are unequal the limit does not exist.

R.H.L. =
$$\lim_{x \to \pi} \left(\frac{1}{\Pi - x} \right) = \lim_{h \to v} \left[\frac{1}{\Pi - (\Pi - h)} \right] = \lim_{h \to 0} \left(\frac{1}{h} \right) \to +\infty$$

Example 4: : $\lim_{x \to 3} \frac{x^2 + 4x + 3}{x^2 + 6x + 9}$.

Solution:

$$\frac{x^{2}+4x+3}{x^{2}+6x+9} = \frac{x^{2}+3x+x+3}{(x+3)^{2}} = \frac{x(x+3)+1(x+3)}{(x+3)^{2}} = \frac{(x+3)(x+1)}{(x+3)^{2}} = \frac{x+1}{x+3}$$

$$\therefore \lim_{x \to 3} \frac{x^{2}+4x+3}{x^{2}+6x+9} = \lim_{x \to 3} \frac{x+1}{x+3} = \frac{4}{6} = \frac{2}{3}.$$
Example 5: Find the following limits:
(i) $\lim_{x \to 9} \frac{\sqrt{x}-3}{x-9};$ (ii) $\lim_{h \to 0} \frac{\sqrt{x}+h-\sqrt{x}}{h}$ if $h > 0.$

Solution:

(i)
$$\frac{\sqrt{x} \cdot 3}{x \cdot 9} = \frac{\sqrt{x} \cdot 3}{(\sqrt{x} + 3)(\sqrt{x} \cdot 3)} = \frac{1}{\sqrt{x} + 3}$$
. $\therefore \lim_{x \to 9} \frac{\sqrt{x} \cdot 3}{x \cdot 9} = \lim_{x \to 9} \frac{1}{\sqrt{x} + 3} = \frac{1}{6}$.
(ii) $\frac{\sqrt{x + h} \cdot \sqrt{x}}{h} = \frac{x + h \cdot x}{h(\sqrt{x + h} + \sqrt{x})} = \frac{1}{\sqrt{x + h} + \sqrt{x}}$ $\therefore \lim_{h \to 0} \frac{\sqrt{x + h} \cdot \sqrt{x}}{h} = \lim_{h \to 0} \frac{1}{\sqrt{x + h} + \sqrt{x}}$
 $= \frac{1}{\lim_{h \to 0} \sqrt{x + h} + \lim_{h \to 0} \sqrt{x}} = \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$.
Example 6: Find $\lim_{x \to 0} \frac{3x + |x|}{7x \cdot 5|x|}$.
Solution: Right-hand limit $= \lim_{x \to 0^+} \frac{3x + |x|}{7x \cdot 5|x|} = \lim_{x \to 0^+} \frac{3x + x}{7x \cdot 5x} = \lim_{x \to 0^+} 2 = 2$

8.10

Left-hand limit
$$\lim_{x\to 0^-} \frac{3x+|x|}{7x+5|x|} = \lim_{x\to 0^-} \frac{3x-(x)}{7x+5(x)} = \lim_{x\to 0^-} \frac{1}{6} = \frac{1}{6}$$
.
Since Right-hand limit \neq Left-hand limit the limit does not exist.
Example 7: Evaluate $\lim_{x\to 0} \frac{e^x \cdot e^{-x}}{x}$
Solution: $\lim_{x\to 0} \frac{e^x \cdot e^{-x}}{x} = \lim_{x\to 0} \frac{(e^x \cdot 1) \cdot (e^{-x} \cdot 1)}{x} = \lim_{x\to 0} \frac{e^x \cdot 1}{x} - \lim_{x\to 0} \frac{e^{-x} \cdot 1}{x} = 1 - 1 = 0$
Example 8: Find $\lim_{x\to\infty} \left(1 + \frac{9}{x}\right)^x$. (Form 1.)
Solution: It may be noted that $\frac{x}{9}$ approaches \propto as x approaches ∞ . i.e. $\lim_{x\to\infty} \frac{x}{9} \to \infty$
 $\lim_{x\to\infty} \left(1 + \frac{9}{x}\right)^x = x / 9 \to \infty \left[1 + \frac{1}{x}\right]^{9} = 1 - 1 = 0$
Substituting $x/9 = z$ the above expression takes the form $\lim_{z\to\infty} \left[\left(1 + \frac{1}{z}\right)^z\right]^9 = e^9$.
Example 9: Evaluate: $\lim_{x\to\infty} \frac{2x+1}{x^3+1}$.

Solution: As x approaches $\propto 2x + 1$ and $x^3 + 1$ both approach \propto and therefore the given function takes the form $\frac{\alpha}{\alpha}$ which is indeterminate. Therefore instead of evaluating directly let us try for suitable algebraic transformation so that the indeterminate form is avoided.

$$\lim_{X \to \infty} \frac{\frac{2}{x^2} + \frac{1}{x^3}}{1 + \frac{1}{x^3}} = \frac{\lim_{X \to \infty} \left(\frac{2}{x^2} + \frac{1}{x^3}\right)}{\lim_{X \to \infty} \left(1 + \frac{1}{x^3}\right)} = \frac{\lim_{X \to \infty} \frac{2}{x^2} + \lim_{X \to \infty} \frac{1}{x^3}}{\lim_{X \to \infty} 1 + \lim_{X \to \infty} \frac{1}{x^3}} = \frac{0 + 0}{1 + 0} = \frac{0}{1} = 0.$$

MATHS

Example 10: Find $\lim_{x \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + x^2}{x^3}$ **Solution:** $\lim_{x \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + x^2}{3}$ $\lim_{x \to \infty} \frac{[x(x+1)(2x+1)]}{6x^3} = \frac{1}{6} \lim_{x \to \infty} \left\{ \left(1 + \frac{1}{x} \right) \left(2 + \frac{1}{x} \right) \right\}$ $=\frac{1}{6} \times 1 \times 2 = \frac{1}{3}$. Example 11: $\lim_{x \to \infty} \left(\frac{1}{1-n^2} + \frac{2}{1-n^2} + \frac{3}{1-n^2} + \frac{n}{1-n^2} \right)$ Solution : $= \lim_{x \to \infty} \left(\frac{1}{1-n^2} + \frac{2}{1-n^2} + \frac{3}{1-n^2} + \frac{n}{1-n^2} \right)$ $= \lim_{x \to \infty} \frac{1}{1 - n^2} (1 + 2 + 3 \dots + n)$ $= \lim_{x \to \infty} \frac{1}{1 n^2} \times \frac{n(n+1)}{2}$ $= \lim_{x \to \infty} \frac{1}{1 - n^2} \times \frac{n(n+1)}{2}$ $=\frac{1}{2}\lim_{x\to\infty}\frac{n}{1-n}$ $= \frac{1}{2} \lim_{x \to \infty} \left| \frac{1}{\frac{1}{x}} \right|$ $=\frac{1}{2}\lim_{x\to\infty}\frac{1}{0-1}=\frac{1}{2}(-1)=\left(-\frac{1}{2}\right)$

Exercise 8 (B)

Choose the most appropriate option (a) (b) (c) or (d)

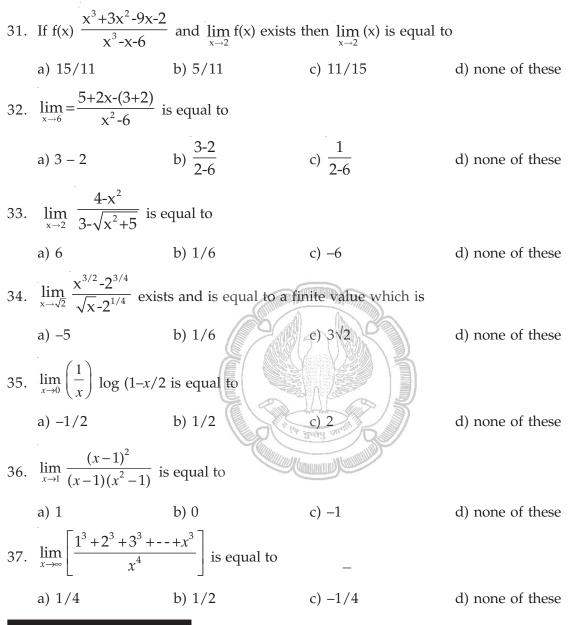
1.	$\lim_{x\to 0} f(x)$	when $f(x) = 6$ is		
	a) 6	b) 0	c) 1/6	d) none of these

Copyright - The Institute of Chartered Accountants of India

2.	$\lim_{x \to 2} (3x + 2) $ is equal to						
	a) 6	b) 4	c) 8	d) none of these			
3.	$\lim_{x \to -2} \frac{x^2 - 4}{x + 2}$ is equal	to					
	a) 4	b) -4	c) does not exist	d) none of these			
4.	$\lim_{x\to\infty} \left(\frac{3}{x^2} + 2\right)$						
	a) 0	b) 5	c) 2	d) none of these			
5.	$\lim_{x\to 1} \log e^x \text{ is evalue}$	uated to be					
	a) 0	b) e	c) 1	d) none of these			
6.	The value of the lin	mit of $f(x)$ as $x \rightarrow 3$ wl	hen $f(x) = e^{x^2 + 2x + 1}$ is				
	a) e ¹⁵	b) e ¹⁶	c) e ¹⁰	d) none of these			
7.	$\lim_{x \to 1/2} \left(\frac{8x^3 - 1}{6x^2 - 5x + 1} \right)$	is equal to					
	a) 5	b) -6	c) 6	d) none of these			
8.	$\lim_{x \to 0} \frac{\sqrt{1+2x^2} - \sqrt{1-2x^2}}{x^2}$	$\frac{2x^2}{2x^2}$ is equal to	A STATE FFE				
	a) 2	b) –2	c) ½	d) none of these			
9.	$\lim_{x \to p} \frac{\sqrt{x - q} - \sqrt{p - q}}{x^2 - p^2}$	(p>q) is evaluated as	i -				
	1	1	1				
	a) $\overline{p\sqrt{p-q}}$	b) $\frac{1}{4p\sqrt{p-q}}$	c) $\overline{2p\sqrt{p-q}}$	d) none of these			
10.	$\lim_{x \to 0} \frac{(3^x - 1)}{x} \text{ is equal}$	al to					
	a) 10 ³ log ₁₀ 3	b) log ₃ e	c) log _e 3	d) none of these			
11.	$\lim_{x \to 0} \frac{5^x + 3^x - 2}{x}$ will	be equal to					
	a) log _e 15	b) log (1/15)	c) log e	d) none of these			

12.	$\lim_{x \to 0} \frac{10^{x} - 5^{x} - 2^{x}}{x^{2}}$ is	equal to		
		b) $\log_{e} 2 \log_{e} 5$		d) none of these
13.	If $f(x) = ax^2 + bx + c$	then $\lim_{x\to 0} f(x+h)-f(x+h$	$\frac{x}{2}$ is equal to	
		b) ax + 2b		d) none of these
14.	$\lim_{x \to 2} \ \frac{2x^2 - 7x + 6}{5x^2 - 11x + 2} \text{ is}$	equal to		
	a) 1/9	b) 9	c) -1/9	d) none of these
15.	$\lim_{x \to 1} \frac{x^3 - 5x^2 + 2x + 2}{x^3 + 2x^2 - 6x + 3}$	is equal to		
	,	b) –5	c) 1/5	d) none of these
16.	$\lim_{x \to t} \frac{x^3 - t^3}{x^2 - t^2} \text{ is evalue}$	ated to be		
	a) 3/2	b) 2/3t	$c) \begin{bmatrix} 3\\2 \end{bmatrix} t$	d) none of these
17.	$\lim_{x \to 0} 4x^4 + 5x^3 7x^2 + 5x^5 + 7x^5 + 7x^5$	$\frac{-6x}{c}$ is equal to	gring or milling	
	a) 7	b) 5	c) –6	d) none of these
18.	$\lim_{x \to 2} \frac{(x^2 - 5x + 6)}{x^3 - 3x^2}$	$\frac{(x^2 - 3x + 2)}{+4}$ is equal to)	
	,	b) 3	c) -1/3	d) none of these
19.	$\lim_{x\to\infty} \frac{\sqrt{3x^4 + 5x^2 + 2x^2}}{4x^2}$	7x + 5 is evaluated		
	a) $\frac{\sqrt{3}}{4}$	b) $\sqrt{3}$	c) -1/4	d) none of these
20.	$\lim_{x \to 0} \frac{(e^x + e^{-x} - 2)}{(x - 2)^2}$	$\frac{(x^2 - 3x + 2)}{(1)}$ is equal	al to	
	a) 1	b) 0	c) –1	d) none of these

COMMON PROFICIENCY TEST



21. $\lim_{x\to 1}$	$\frac{(1-x^{-1/3})}{(1-x^{-2/3})}$ is eq.	ual to		
a) –	1/2	b) 1/2	c) 2	d) none of these
22. $\lim_{x\to 4}$	$\frac{(x^2-16)}{(x-4)}$ is evaluated as $\frac{(x^2-16)}{(x-4)}$	luated as		
a) 8		b) –8	c) 0	d) none of these
23. $\lim_{x\to 1}$	$\frac{x^2 - \sqrt{x}}{\sqrt{x} - 1}$ is equ	al to		
a) –	3	b) 1/3	c) 3	d) none of these
24. $\lim_{x\to 1}$	$\frac{x^3 - 1}{x - 1}$ is equal	to		
a) 3		b) -1/3	c) 3	d) none of these
25. $\frac{(1)}{(1+1)^2}$	$\frac{(x+x)^6}{(x)^2-1}$ then $\lim_{x\to 0}$	f(x) is equal to	2052	
	1		c) 0	d) none of these
	$\log \frac{(1+px)}{e^{3x}-1}$ is		THE THE R	
a) p		b) p	c) 1/3	d) none of these
27. $\lim_{x\to\infty}$	$\left(\frac{1}{x^3 + x^2 + x + 1}\right)$) is equal to		
a) 0		,	c) –e ⁶	d) none of these
28. $\lim_{x\to\infty}$	$\frac{2x^2 + 7x + 5}{4x^2 + 3x - 1}$ is	equal to l where l is		
a) –	1/2	b) 1/2	c) 2	d) none of these
29. $\lim_{x\to\infty}$	$\frac{(x\sqrt{x}-m\sqrt{m})}{1-x^{-2/3}}$	is equal to		
a) 1		b) –1	c) 1/ 2	d) none of these
30. $\lim_{x\to 0}$	$\frac{(x+2)^{5/3}-(p+x-p)}{x-p}$	$(2)^{5/3}$ is equal to		
a) p		b) 1/p	c) 0	d) none of these

— — |

Copyright -The Institute of Chartered Accountants of India

8.6 CONTINUITY

By the term "continuous" we mean something which goes on without interruption and without abrupt changes. Here in mathematics the term "continuous" carries the same meaning. Thus we define continuity of a function in the following way.

A function f(x) is said to be continuous at x = a if and only if

- (i) f(x) is defined at x = a
- (ii) $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} f(x)$

(iii) $\lim_{x\to a} f(x) = f(a)$

In the second condition both left-hand and right-hand limits exists and are equal.

In the third condition limiting value of the function must be equal to its functional value at x = a.

Useful Information:

- (i) The sum difference and product of two continuous functions is a continuous function. This property holds good for any finite number of functions.
- (ii) The quotient of two continuous functions is a continuous function provided the denominator is not equal to zero.

Example 1 :
$$f(x) = \frac{1}{2} - x$$
 when $0 < x < 1/2$

$$= \frac{3}{2} - x$$
 when $\frac{1}{2} < x < 1$

$$= \frac{1}{2}$$
 when $x = \frac{1}{2}$
Discuss the continuity of $f(x)$ at $x = \frac{1}{2}$.
Solution : $\lim_{x \to \frac{1}{2}} f(x) = \lim_{x \to \frac{1}{2}} (1/2 - x) = \frac{1}{2} - \frac{1}{2} = 0$

$$\lim_{x \to \frac{1}{2}^{+}} f(x) = \lim_{x \to \frac{1}{2}^{+}} (3/2 - x) = (3/2 - 1/2) = 1$$
Since LHL \neq RHL $\lim_{x \to 1/2} f(x)$ does not exist
Moreover $f(1/2) = \frac{1}{2}$
Hence $f(x)$ is not continuous of $x = \frac{1}{2}$, i.e. $f(x)$ is discontinuous at $x = \frac{1}{2}$

Example 2 : Find the points of discontinuity of the function $f(x) = \frac{x^2+2x+5}{x^2-3x+2}$

Solution : $f(x) = \frac{x^2 + 2x + 5}{x^2 - 3x + 2} = \frac{x^2 + 2x + 5}{(x - 1)(x - 2)}$

For x = 1 and x = 2 the denominator becomes zero and the function f(x) is undefined at x = 1 and x = 2. Hence the points of discontinuity are at x = 1 and x = 2.

Example 3 : A function g(x) is defined as follows:

$$g(x) = x \text{ when } 0 < x < 1$$
$$= 2 - x \text{ when } x \ge 1$$

MATHS

Is g(x) is continuous at x = 1?

Solution :

 $\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} x = 1$ $\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{+}} (2 - x) = 2 - 1 = 1$ $\therefore \lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{+}} g(x) = 1$ Moreover g(1) = 2 - 1 = 1So $\lim_{x \to 1} g(x) = g(1) = 1$

Hence f(x) is continuous at x = 1.

Example 4: The function $f(x) = (x^2 - 9) / (x - 3)$ is undefined at x = 3. What value must be assigned to f(3) if f(x) is to be continuous at x = 3?

Solution : When x approaches $3 \times \neq 3$ i.e. $x - 3 \neq 0$

So
$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{(x-3)(x+3)}{(x-3)}$$

= $\lim_{x \to 3} (x+3) = 3 + 3 = 6$

Therefore if f(x) is to be continuous at x = 3, $f(3) = \lim_{x \to a} f(x) = 6$.

Example 5: Is the function f(x) = |x| continuous at x = 0? **Solution**: We know |x| = x when x > 0

= 0 when x = 0= -x when x < 0

Now $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-x) = 0$ and $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x = 0$ Hence $\lim_{x \to 0} f(x) = 0 = f(0)$

So f(x) is continuous at x = 0.

Exercise 8(C)

8.18

Choose the most appropriate option (a) (b) (c) or (d)

1. If f(x) is an odd function then

c)
$$\frac{f(x)+f(-x)}{2}$$
 is neither even or odd
d) none of these.
2. If $f(x)$ and $g(x)$ are two functions of x such that $f(x) + g(x) = e^x$ and $f(x) - g(x) = e^{-x}$ then
a) $f(x)$ is an odd function b) $g(x)$ is an odd function
c) $f(x)$ is an even function d) $g(x)$ is an even function
3. If $f(x) = \frac{2x^2 + 6x - 5}{12x^2 + 20}$ is to be discontinuous then
a) $x = 5/4$ b) $x = 4/5$ c) $x = -4/3$ d) none of these.
4. A function $f(x)$ is defined as follows
 $f(x) = x^2$ when $0 < x < 1$
 $= x$ when $1 \le x < 2$
 $= (1/4) x^3$ when $2 \le x < 3$
Now $f(x)$ is continuous at
a) $x = 1$ b) $x = 3$
b) does not exist
a) exists b) does not exist
c) $x = 0$ d) none of these.
5. $\lim_{x \to 0} \frac{3x + |x|}{7x - 5|x|}$ b) does not exist
c) $x = 0$ d) none of these.
6. If $f(x) = \frac{(x+1)}{\sqrt{6x^2 + 3 + 3x}}$ then $\lim_{x \ge 1} f(x)$ and $f(-1)$
a) both exists b) does not exist d) none of these.
7. $\lim_{x \to 0} \frac{x^2 - 1}{\sqrt{3x + 1 - \sqrt{5x} - 1}}$ is evaluated to be
a) 4 b) $1/4$ c) -4 d) none of these.
8. $\lim_{x \to 0} (\sqrt{x + h} - \sqrt{x}) / h$ where $h \rightarrow 0$ is equal to
a) $1/2 x$ b) $1/2x$ c) $x / 2$ d) $\frac{1}{2\sqrt{x}}$
9. Let $f(x) = x$ when $x > 0$
 $= 0$ when $x = 0$
 $= -x$ when $x < 0$

MATHS

Copyright -The Institute of Chartered Accountants of India

8.19

Now f(x) is a) discontinuous at x = 0b) continuous at x = 0c) undefined at x = 0d) none of these. 10. If f(x) = 5+3x for $x \ge 0$ and f(x) = 5 - 3x for x < 0 then f(x) is a) continuous at x = 0b) discontinuous and defined at x = 0c) discontinuous and undefined at x = 0d) none of these. 11. $\lim_{x \to 1} \left\{ \frac{(x-1)^2}{x-1} + (x^2-1) \right\}$ a) does not exist b) exists and is equal to two c) is equal to 1 d) none of these. 12. $\lim_{x \to 0} \frac{4^{x+1}-4}{2x}$ a) does not exist b) exists and is equal to 4 c) exists and is equal to 4 log₂2 d) none of these. 13. Let $f(x) = \frac{(x^2 - 16)}{(x-4)}$ for $x \neq 4$ = 10for x = 4Then the given function is not continuous for (a) limit f(x) does not exist (b) limiting value of f(x) for $x \rightarrow 4$ is not equal to its function value f(4)(c) f(x) is not defined at x = 4(d) none of these. 14. A function f(x) is defined by f(x) = (x-2)+1 over all real values of x, now f(x) is (a) continuous at x = 2(b) discontinuous at x = 2(c) undefined at x = 2(d) none of these. 15. A function f(x) defined as follows f(x) = x+1 when $x \le 1$ = 3 - px when x > 1The value of p for which f(x) is continuous at x = 1 is (a) -1 (b) 1 (c) 0 (d) none of these. 16. A function f(x) is defined as follows :

8.20

f(x) = x when x < 1= 1+x when x > 1= 3/2 when x = 1 Then f(x) is (a) continuous at $x = \frac{1}{2}$ (b) continuous at x = 1(c) undefined at $x = \frac{1}{2}$ (d) none of these. 17. Let f(x) = x / |x|. Now f(x) is (a) continuous at x = 0(b) discontinuous at x = 0(c) defined at x = 0(d) none of these. 18. f(x) = x-1 when x > 0 $= -\frac{1}{2}$ when x = 0 = x + 1 when x < 0f(x) is (a) continuous at x = 0(b) undefined at x = 0(c) discontinuous at x = 0(d) none of these. 19. $\lim_{x \to 0} \left(\frac{x+6}{x+1} \right)^{x+4}$ is equal to (a) 6⁴ (b) $1/e^{5}$ (c) –e⁵ (d) none of these. 20. $\lim_{x \to 0} \frac{(e^{2x} - 1)}{x}$ is equal to (a) $\frac{1}{2}$ (b) 2 (c) 0 (d) none of these. 21. $\lim_{x \to \infty} \frac{e^x + 1}{e^x + 2}$ is evaluated to be (a) 0 (b) -1 (d) none of these. (c) 1 22. If $\lim_{x \to 3} \left(\frac{x^n \cdot 3^n}{x \cdot 3} \right) = 108$ then the value of n is (a) 4 (c) 1 (d) none of these. (b) -4 23. $f(x) = (x^2 - 1) / (x^3 - 1)$ is undefined at x = 1 the value of f(x) at x = 1 such that it is continuous at x = 1 is (a) 3/2 (b) 2/3(c) - 3/2(d) none of these. 24. f(x) = 2x - |x| is (a) undefined at x = 0(b) discontinuous at x = 0(d) none of these. (c) continuous at x = 0

MATHS

8.21

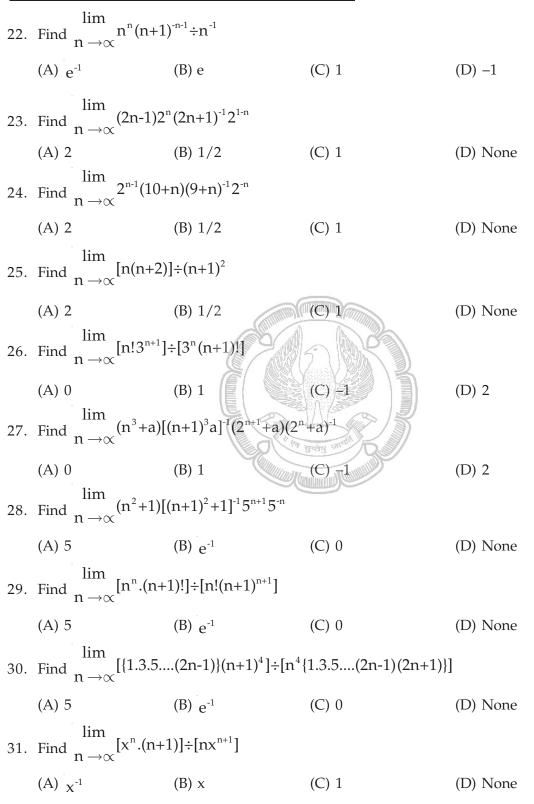
25.	25. If $f(x) = 3$, when $x < 2$						
$f(x) = kx^2$, when $x \ge 2$ is continuous at $x = 2$, then the value of k is							
	(a) ³ ⁄ ₄	(b) 4/3	(c) 1/3	(d) none of these.			
26.	$f(x) = \frac{x^2 - 3x + 2}{x - 1} x \neq x$	1 becomes continuou	us at $x = 1$. Then the v	alue of f(1) is			
	(a) 1	(b) –1	(c) 0	(d) none of these.			
27.	$f(x) = \frac{(x^2 - 2x - 3)}{(x + 1)} x =$	\neq –1 and f(x) = k, wh	en x = -1 If(x) is conti	nuous at $x = -1$.			
	The value of k will						
	(a) -1	(b) 1	(c) -4	(d) none of these.			
28.	$\lim_{x \to 1} \left(\frac{x^2 - \sqrt{x}}{\sqrt{x} - 1} \right) is equ$	ual to					
	(a) 3	(b) -3	(c) 1/3	(d) none of these.			
29.	$\lim_{x \to 0} \frac{e^{x^2} - 1}{x^2} \text{ is evalu}$	lecolla l'al					
	(a) 1	(b) ½	(c) -1	(d) none of these.			
30.	If $\lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = 80$	and n is a positve int	teger, then				
	(a) n = 5	(b) n = 4	(c) $n = 0$	(d) none of these.			
31.	$\lim_{x \to \sqrt{2}} \frac{x^{5/2} - 2^{5/4}}{\sqrt{x} - 2^{1/4}} \text{ is even}$	qual to					
	(a) 1/ 10	(b) 10	(c) 20	(d) none of these.			
32.	$\lim_{x \to 1} \left(\frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)$	$\left(\frac{1}{2}\right)$ is evaluated to be					
	(a) 1/9	(b) 9	(c) – 1/9	(d) none of these.			
33.	$\lim_{n \to \infty} \left[\frac{1}{6} + \frac{1}{6^2} + \frac{1}{6^3} + \cdots \right]$	$\cdots + \frac{1}{6^n}$ is					
	(a) 1/5	(b) 1/6	(c) – 1/5	(d) none of these.			

8.22

- Contraction of the second se

34.	34. The value of $\lim_{x \to 0} u^x + v^x + w^x - 3 / x$ is						
((a) uvw	(b) log ı	IVW	(c) log (1/	′uvw)	(d) none of	f these.
35.	$\lim_{x\to 0} \frac{x}{\log(1+x)}$ is	equal to					
((a) 1	(b) 2		(c) -0.5		(d) none of	f these.
	NSWERS						
	rcise 8(A)						
1. a	1 2. b	3. c	4. a	5. c	6. a	7. b	8. c
9. b	o 10. a						
Exe	rcise 8(B)						
1. a	2. c	3. b	4. C	-5. c	6. b	7. с	8. a
9. 1	b 10. c	11. a	12. d	13. c	14. a	15. b	16. c
17.	а 18. с	19. a	20. b	21. b	2 2. a	23. с	24. a
25.	b 26. a	27. a	28. b	29. a	30. d	31. a	32. c
33.	a 34. c	35. a	36. b	37. a	13		
Exe	rcise 8(C)		Contraction of the second	हान्नेषु जानाति हे			
1. a	a 2. bc	3. a,c	4. a	5. a	6. b	7. с	8. d
9. b) 10. a	11. b	12. c	13. b	14. a	15. b	16. a
17.1	b 18. c	19. a	20. b	21. c	22. a	23. b	24. c
25.	a 26. b	27. с	28. a	29. a	30. a	31. b	32. c
33.	a 34. b	35. a					

ADDITIONAL QUESTION BANK


1.	The value of the limit when <i>n</i> tends to infinity of the expression $(7n^3 - 8n^2 + 10n - 7) \div (8n^3 - 9n^2 + 5)$ is					
	(A) 7/8	(B) 8/7	(C) 1	(D) None		
2.	The value of the lim	nit when <i>n</i> tends to inf	inity of the expression	$(n^4 - 7n^2 + 9) \div (3n^2 + 5)$ is		
	(A) 0	(B) 1	(C) –1	(D) ∝		
3.			infinity of the express $20m \pm 45$ is	ion		
		$(19) \div (17n^4 + 18n^3)$				
	(A) 0	(B) 1	(C) –1	(D) $1/\sqrt{2}$		
4.	The value of the lin	nit when <i>n</i> tends to in	finity of the expression	$(2n) \div [(2n-1)(3n+5)]$ is		
	(A) 0	(B) 1	(C)-1	(D) $1/\sqrt{2}$		
5.	The value of the line	mit when <i>n</i> tends to i	infinity of the expressi	on		
	$n^{1/3}(n^2+1)^{1/3}(2n)$	$(n^2+3n+1)^{-1/2}$ is	12213			
	(A) 0	(B) 1	(C)-1	(D) $1/\sqrt{2}$		
6.	The value of the lin	mit when x tends to i	of the expression (x^n)	$-a^n$)÷(x-a) is		
	(A) na ⁿ⁻¹	(B) na ⁿ	(C) (n-1)a ⁿ⁻¹	(D) $(n+1)a^{n+1}$		
7.	The value of the lin	mit when x tends to z	zero of the expression	$(1+n)^{1/n}$ is		
	(A) <i>e</i>	(B) 0	(C) 1	(D) –1		
8.	The value of the line	mit when <i>n</i> tends to i	nfinity of the expression	on $\left(1+\frac{1}{n}\right)^n$ is		
	(A) <i>e</i>	(B) 0	(C) 1	(D) –1		
9.	The value of the lin	mit when x tends to z	zero of the expression	$[(1+x)^{n} - 1] \div x$ is		
	(A) <i>n</i>	(B) <i>n</i> + 1	(C) <i>n</i> – 1	(D) $n(n-1)$		
10.	The value of the lin	mit when <i>x</i> tends to <i>x</i>	zero of the expression	$(e^{x}-1)/x$ is		
	(A) 1	(B) 0	(C) – 1	(D) indeterminate		
11.	The value of the lin	mit when x tends to 3	3 of the expression (x^2)	$+2x-15)/(x^2-9)$ is		
	(A) 4/3	(B) 3/4	(C) 1/2	(D) indeterminate		

8.24

12.	The value of the lim	it when <i>x</i> tends to ze	ero of the expression [$(a + x^2)^{1/2} - (a - x^2)^{1/2}] \div x^2$ is							
	(A) $a^{-1/2}$	(B) $a^{1/2}$	(C) a	(D) a^{-1}							
13.	The value of the limit when x tends to unity of the expression $[(3+x)^{1/2}-(5-x)^{1/2}] \div (x^2-1)$ is										
	(A) 1/4	(B) ¹ / ₂	(C) -1/4	(D) -1/2							
14.	The value of the limit when x tends to 2 of the expression $(x-2)^{-1}-(x^2-3x+2)^{-1}$ is										
	(A) 1	(B) 0	(C) –1	(D) None							
15.	The value of the lim	alue of the limit when <i>n</i> tends to infinity of the expression $(2^{2}+5n+6)[(n+4)(n+5)]^{-1}$ is (B) 0 (C) -1 (D) None									
	$2^{-n}(n^2+5n+6)[(n+4)(n+4)(n+4)(n+4)(n+4)(n+4)(n+4)(n+4)$)(n+5)] ⁻¹ is									
	(A) 1	(B) 0	(C) –1	(D) None							
16.	The value of lim	$\frac{n+1}{2}$									
	(A) 1	(B) 0 (C) -1 (D) None									
17.	Find $\lim_{n \to \infty} [n^{1/2} + (n^{1/2})]$	$(n+1)^{1/2}]^{-1}$; $n^{-1/2}$	2 1897 2								
	(A) 1/2	Tel Col	hand the state	(D) INONE							
18.	Find $\lim_{n \to \infty} (2n-1)(2n-1)$	$\inf_{n \to \infty} \lim_{n \to \infty} (2n-1)(2n)n^2(2n+1)^2(2n+2)^2$									
	(A) 1/4	(B) 1/2	(C) 1	(D) None							
	$\lim_{\mathbf{I}(x_1^3+1)}$	$\lim_{n \to \infty} (2n-1)(2n)n^2(2n+1)^2(2n+2)^2$ /4 (B) 1/2 (C) 1 (D) None									
19.	Find $n \to \infty^{l(n^2+1)}$	-n' j÷n'									
	(A) 1/4	(B) 0	(C) 1	(D) None							
20	$\lim_{n \to \infty} \int (n^4 + 1)^{1/2} (n^4 - 1)^{1/2} dn^{-2}$										
20.	$rima n \rightarrow \propto r(n+1)$										
			(C) 1	(D) None							
21.	Find $\lim_{n \to \infty} (2^n - 2)(2^n - 2)$	$ \frac{1/2}{\ln n \to \infty} (B) 0 (C) 1 (D) \text{ None} $ $ \frac{1}{\ln n \to \infty} (2n-1)(2n)n^{2}(2n+1)^{2}(2n+2)^{2} (C) 1 (D) \text{ None} $ $ \frac{1}{\ln n \to \infty} [(n^{3}+1)^{1/2} - n^{3/2}] \div n^{3/2} $ $ \frac{1}{4} (B) 0 (C) 1 (D) \text{ None} $ $ \frac{1}{\ln n \to \infty} [(n^{4}+1)^{1/2} - (n^{4}-1)^{1/2}] \div n^{-2} $ $ \frac{1}{4} (B) 1/2 (C) 1 (D) \text{ None} $ $ \frac{1}{\ln n \to \infty} [(n^{4}+1)^{1/2} - (n^{4}-1)^{1/2}] \div n^{-2} $ $ \frac{1}{\ln n \to \infty} (2^{n}-2)(2^{n}+1)^{-1} $									
	(A) 1/4	(B) 1/2	(C) 1	(D) None							

8.26

32. Find $\lim_{n \to \infty} n^n (1+n)^{-n}$ (A) e^{-1} (B) e (C) 1 (D) -1 33. Find $\lim_{n \to \infty} [(n+1)^{n+1} \cdot n^{-n-1} \cdot (n+1) \cdot n^{-1}]^{-n}$ (A) (e-1)⁻¹ (B) $(e+1)^{-1}$ (C) e-1 (D) e+1 34. Find $\lim_{n \to \infty} (1+n^{-1})[1+(2n)^{-1}]^{-1}$ (A) 1/2 (B) 3/2 (C) 1 (D) -1 35. Find $\lim_{n \to \infty} [4n^2 + 6n + 2] \div 4n^2$ (A) 1/2 (B) 3/2(C) 1 (D) -1 36. $3x^2+2x-1$ is continuous (A) at x = 2(B) for every value of x (C) both (A) and (B) (D) None 37. $f(x) = \frac{|x|}{x}$, when $x \neq 0$, then f(x) is (A) discontinuous at x = 0(B) continuous at x = 0(C) maxima at x = 0(D) minima at x = 038. $e^{-1/x}[1+e^{1/x}]^{-1}$ is (A) discontinuous at x = 0(B) continuous at x = 0(C) maxima at x = 0(D) minima at x = 039. If $f(x)=(x^2-4)\div(x-2)$ for x<2, f(x)=4 for x=2 and f(x)=2 for x>2, then f(x) at x = 2 is (A) discontinuous (B) continuous (C) maxima (D) minima 40. If f(x)=x for $0 \le x < 1/2$, f(x)=1 for x=1/2 and f(x)=1-x for 1/2 < x < 1 then at the function is (A) discontinuous (B) continuous (C) left-hand limit coincides with f(1/2) (D) right-hand limit coincides with left-hand limit.

- 41. If $f(x)=9x \div (x+2)$ for x<1, f(1)=3, $f(x)=(x+3)x^{-1}$ for x>1, then in the interval (-3, 3) the function is
 - (A) continuous at x = -2
 - (B) continuous at x = 1
 - (C) discontinuous for values of x other than -21 in the interval
 - (D) None

ANSWERS

1)	А	2)	D	3)	А	4)	А	5)	D	6)	А	
7)	А	8)	А	9)	А	10)	А	11)	А	12)	А	
13)	А	14)	А	15)	В	16)	А	17)	А	18)	А	
19)	В	20)	С	21)	С	22)	А	23)	А	24)	В	
25)	С	26)	А	27)	D	28)	A	29)	В	30)	С	
31)	А	32)	А	33)	A	34)	A	35)	С	36)	С	
37)	А	38)	А	39)	A	40)	A	41)	D			

